Abstract

The way of kernel function has been widely applied in machine learning field, such as artificial neural network and support vector machine, for avoiding dimensional disaster of feature space and improving performance of learning machine effectively. The selection of kernel function and construction of new kernel are the core problems, which have a direct relation with the performance of classification, and the research of this field is not enough. In this paper support vector machine (SVM) was used as an example, and the performance of common kernel functions was evaluated through observing and computing the features of kernel matrix. Base on this, a new mixed kernel function was gotten by optimization of kernel functions, and the experimental data proved that the performance of SVM was improved by the mixed kernel function. If the weighting coefficient was selected properly, the correct rate could even reach to 100%. What’s more, not only a method to construct a new learning machine was given, but also a reference for selecting kernel function was given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.