Abstract
Temporal knowledge base exists on various fields. Take medical medicine field as example, diabetes is a typical chronic disease which evolves slowly. This paper starts from actual EMR data of hospitals by combination of experience and knowledge of clinical doctors. Link prediction on clinical knowledge base such as diabetic complication requires the analysis on temporal characteristic of temporal knowledge base, which is a great challenge for traditional link prediction models. This paper proposes temporal knowledge graph link prediction model based on deep learning. This model selects the TransR transformation model suitable for big data and makes entity projection in relation space containing different semantic meanings, so as to vector the entities and complex semantic relations in graph. Then it adopts LSTM recursive neural network and adds the top-bottom relational information of the graph for sequential learning. Finally it constantly carries out deep learning through incremental calculation and LSTM recursive network to improve the accuracy of prediction. The incremental LSTM model highlights the hidden semantic and clinical temporal information and effectively utilizes sequential learning to mining forward-backward dependent information. It compensates the deficiency of lower prediction accuracy on timely knowledge graph caused by the traditional link prediction models. Finally, it is proved that the new model has better performance over temporal knowledge graph link prediction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.