Abstract

The design and technological conditions for the manufacture of photoconductive antennas based on low-temperature gallium arsenide (LT-GaAs) have been developed. The optimized photoconductive THz antenna is made based on LT-GaAs with the flag geometry of the contacts and with the interdigitated structure including metal closing through the dielectric of each second period. LT-GaAs samples were obtained by molecular beam epitaxy at temperatures of 210 °C, 230 °C, 240 °C on GaAs substrates (100). Dark and photocurrent were measured depending on the bias voltage of the LT-GaAs heterostructure at the EP6 probe station. Full wave finite element method solver has been used to investigate the proposed plasmon PCA electrical and optical behavior by combining the Maxwell's wave equation with the drift-diffusion/Poisson equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call