Abstract

The tubing internal thread plays an irreplaceable role in the petroleum equipment. The unqualified tubing can directly lead to leakage, slippage and bring huge losses for oil industry. For the purpose of improving efficiency and precision of tubing internal thread detection, we develop a new non-contact tubing internal thread measurement system based on the laser triangulation principle. Firstly, considering that the tubing thread had a small diameter and relatively smooth surface, we built a set of optical system with a line structured light to irradiate the internal thread surface and obtain an image which contains the internal thread profile information through photoelectric sensor. Secondly, image processing techniques were used to do the edge detection of the internal thread from the obtained image. One key method was the sub-pixel technique which greatly improved the detection accuracy under the same hardware conditions. Finally, we restored the real internal thread contour information on the basis of laser triangulation method and calculated tubing thread parameters such as the pitch, taper and tooth type angle. In this system, the profile of several thread teeth can be obtained at the same time. Compared with other existing scanning methods using point light and stepper motor, this system greatly improves the detection efficiency. Experiment results indicate that this system can achieve the high precision and non-contact measurement of the tubing internal thread.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.