Abstract

This paper compares contending advanced data assimilation algorithms using the same dynamical model and measurements. Assimilation experiments use the ensemble Kalman filter (EnKF), the ensemble Kalman smoother (EnKS) and the representer method involving a nonlinear model and synthetic measurements of a mesoscale eddy. Twin model experiments provide the “truth” and assimilated state. The difference between truth and assimilation state is a mispositioning of an eddy in the initial state affected by a temporal shift. The systems are constructed to represent the dynamics, error covariances and data density as similarly as possible, though because of the differing assumptions in the system derivations subtle differences do occur. The results reflect some of these differences in the tangent linear assumption made in the representer adjoint and the temporal covariance of the EnKF, which does not correct initial condition errors. These differences are assessed through the accuracy of each method as a function of measurement density. Results indicate that these methods are comparably accurate for sufficiently dense measurement networks; and each is able to correct the position of a purposefully misplaced mesoscale eddy. As measurement density is decreased, the EnKS and the representer method retain accuracy longer than the EnKF. While the representer method is more accurate than the sequential methods within the time period covered by the observations (particularly during the first part of the assimilation time), the representer method is less accurate during later times and during the forecast time period for sparse networks as the tangent linear assumption becomes less accurate. Furthermore, the representer method proves to be significantly more costly (2–4 times) than the EnKS and EnKF even with only a few outer iterations of the iterated indirect representer method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.