Abstract

This study investigated the suitability of outdoor particulate matter data obtained from a fixed monitoring station in estimating the personal deposited dose. Outdoor data were retrieved from a station located within the urban area of Lisbon and simulations were performed involving school children. Two scenarios were applied: one where only outdoor data were used assuming an outdoor exposure scenario, and a second one where an actual exposure scenario was adopted using the actual microenvironment during typical school days. Personal PM10 and PM2.5 dose (actual exposure scenario) was 23.4% and 20.2% higher than the ambient (outdoor exposure scenario) PM10 and PM2.5 doses, respectively. The incorporation of the hygroscopic growth in the calculations increased the ambient dose of PM10 and PM2.5 by 8.8% and 21.7%, respectively. Regression analysis between the ambient and personal dose showed no linearity with R2 at 0.07 for PM10 and 0.22 for PM2.5. On the other hand, linear regression between the ambient and school indoor dose showed no linearity (R2 = 0.01) for PM10 but moderate (R2 = 0.48) for PM2.5. These results demonstrate that ambient data must be used with caution for the representativeness of a realistic personal dose of PM2.5 while for PM10 the ambient data cannot be used as a surrogate of a realistic personal dose of school children.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call