Abstract
The process by which the mammalian nervous system represents the features of a sapid stimulus that lead to a perception of taste quality has long been controversial. The labeled-line (sparse coding) view differs from the across-neuron pattern (ensemble) counterpoint in proposing that activity in a given class of neurons is necessary and sufficient to generate a specific taste perception. This article critically reviews molecular, electro-physiological, and behavioral findings that bear on the issue. In the peripheral gustatory system, the authors conclude that most qualities appear to be signaled by labeled lines; however, elements of both types of coding characterize signaling of sodium salts. Given the heterogeneity of neuronal tuning functions in the brain, the central coding mechanism is less clear. Both sparse coding and neuronal ensemble models remain viable possibilities. Furthermore, temporal patterns of discharge could contribute additional information. Ultimately, until specific classes of neurons can be selectively manipulated and perceptual consequences assessed, it will be difficult to go beyond mere correlation and conclusively discern the validity of these coding models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.