Abstract

Force control on the basis of prediction avoids time delays from sensory feedback during motor performance. Thus, self-produced loads arising from gravitational and inertial forces during object manipulation can be compensated for by simultaneous anticipatory changes in grip force. It has been suggested that internal forward models predict the consequences of our movements, so that grip force can be programmed in anticipation of movement-induced loads. The cerebellum has been proposed as the anatomical correlate of such internal models. Here, we present behavioural data from patients with cerebellar damage and data from brain imaging in healthy subjects further elucidating the role of the cerebellum in predictive force control. Patients with cerebellar damage exhibited clear deficits in the coupling between grip force and load. A positron-emission-tomography (PET) paradigm that separated the process of the grip force/load coupling from the isolated production of similar grip forces and loads was developed. Interaction and conjunction analyses revealed a strong activation peak in the ipsilateral posterior cerebellum particularly devoted to the predictive coupling between grip force and load. Both approaches clearly demonstrate that the cerebellum plays a major role in force prediction that cannot be compensated for by other sensorimotor structures in case of cerebellar disease. However, evidence suggests that also extra-cerebellar structures may significantly contribute to predictive force control: (1) grip force/load coupling may also be impaired after cerebral and peripheral sensorimotor lesions, (2) a coupling-related activation outside the cerebellum was observed in our PET study, and (3) the scaling of the grip force level and the dynamic grip force coupling are dissociable aspects of grip force control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.