Abstract

The partially-concurrent open shop scheduling problem is introduced. The standard open shop scheduling problem is generalized by allowing some operations to be processed concurrently. A schedule for the partially-concurrent problem is represented by a digraph. We show that the scheduling problem is equivalent to a problem of orienting a given undirected graph, called a conflict graph. The schedule digraph is then modeled by a matrix, generalizing the rank matrix representation. The problem is shown to be NP-hard. The representation can be used to generalize previously discussed standard open shop issues. It is demonstrated by generalizing the theoretical concept of reducibility and also by using standard open shop heuristic solutions to the partially-concurrent scenario. The presented problem is directly motivated from a real-life timetabling project of assigning technicians to airplanes in an airplane garage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.