Abstract

Abstract The ocean’s circulation is analyzed in Absolute Salinity SA and Conservative Temperature Θ coordinates. It is separated into 1) an advective component related to geographical displacements in the direction normal to SA and Θ isosurfaces and 2) into a local component, related to local changes in SA–Θ values, without a geographical displacement. In this decomposition, the sum of the advective and local components of the circulation is equivalent to the material derivative of SA and Θ. The sum is directly related to sources and sinks of salt and heat. The advective component is represented by the advective thermohaline streamfunction . After removing a trend, the local component can be represented by the local thermohaline streamfunction . Here, can be diagnosed using a monthly averaged time series of SA and Θ from an observational dataset. In addition, and are determined from a coupled climate model. The diathermohaline streamfunction is the sum of and and represents the nondivergent diathermohaline circulation in SA–Θ coordinates. The diathermohaline trend, resulting from the trend in the local changes of SA and Θ, quantifies the redistribution of the ocean’s volume in SA–Θ coordinates over time. It is argued that the diathermohaline streamfunction provides a powerful tool for the analysis of and comparison among ocean models and observation-based gridded climatologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.