Abstract

It is our contention that for multiscale modelling of infectious disease systems to evolve and expand in scope, it needs to be founded on a theory. Such a theory would improve our ability to describe infectious disease systems in terms of their scales and levels of organization, and their inter-relationships. In this article we present a relativistic theory for multiscale modelling of infectious disease systems, that can be considered as an extension of the relativity principle in physics, called the replication-transmission relativity theory. This replication-transmission relativity theory states that at any level of organization of an infectious disease system there is no privileged/absolute scale which would determine, disease dynamics, only interactions between the microscale and macroscale. Such a relativistic theory provides a scientific basis for a systems level description of infectious disease systems using multiscale modelling methods. The central idea of this relativistic theory is that at every level of organization of an infectious disease system, the reciprocal influence between the microscale and the macroscale establishes a pathogen replication-transmission multiscale cycle. We distinguish two kinds of reciprocal influence between the microscale and the macroscale based on systematic differences in their conditions of relevancy. Evidence for the validity of the replication-transmission relativity theory is presented using a multiscale model of hookworm infection that is developed at host level when the relationship between the microscale and the macroscale is described by one of the forms of reciprocal influence.

Highlights

  • These models have been used to aid understanding of infectious disease transmission dynamics and increase our capabilities for control of infectious diseases with fewer resources. Within this theory infectious disease dynamics is thought to be a result of three main transmission mechanisms which are as follows. (i) Direct transmission mechanism: in which transmission models are developed based on compartmentalizing the population into susceptible, exposed, infected, recovered (SEIR), and variations of this paradigm (SI, SIS, SEI, SEIS, SIR, SIRS, SEIRS, etc.) at each hierarchical level of an infectious disease system. (ii) Environmental transmission mechanism: in which transmission models are developed based on compartmentalizing the population into susceptible, exposed, infected, recovered, and environmental pathogen load (SEIRP), and variations of this paradigm (SIP, SISP, SEIP, SEISP, SIRP, SIRSP, SEIRSP, etc.)

  • These infectious disease systems can be environmentally transmitted such as in schistosomiasis where transmission models at host level are developed by compartmentalizing the host population into susceptible, exposed, infected, recovered, and environmental pathogen load (SEIRP), and variations of this paradigm (SIP, SISP, SEIP, SEISP, SIRP, SIRSP, SEIRSP, etc.) or directly transmitted such as malaria where transmission models at host level are developed by compartmentalizing the host population into susceptible, exposed, infected, recovered (SEIR), and variations of this paradigm (SI, SIS, SEI, SEIS, SIR, SIRS, SEIRS, etc.) in the context of two-host infections

  • In these papers the authors established a multiscale modelling science base for directly transmitted infectious disease systems that is comparable to the multiscale modelling science base for environmentally transmitted infectious disease systems presented in this article

Read more

Summary

Introduction

Using these two types of reciprocal (i.e., both way) influence between the microscale and the macroscale at hierarchical levels of organization of an infectious disease system which are part of the replication-transmission relativity theory, we can make more precise statements about the five different categories of multiscale models of infectious disease systems given in3,4.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call