Abstract

The replication terminator protein (RTP) of Bacillus subtilis is a dimer with a monomeric molecular mass of 14.5 kDa. The protein terminates DNA replication at a specific binding site. Although the protein has been crystallized and its crystal structure has been solved, the lack of an in vitro replication system in B. subtilis has been a serious impediment to the analysis of the mechanism of action of this protein. We have discovered that the protein is functional in the Gram-negative bacterium Escherichia coli in vivo and in vitro. RTP blocked replication forks initiated from a ColE1 replication origin at the cognate DNA-binding site (BS3) in a polar mode. The protein did not block rolling circle replication initiated from the pT181 origin in cell extracts of Staphylococcus aureus. RTP antagonized the helicase activity of DnaB but not that of helicase II of E. coli. Thus, RTP functioned as a polar contrahelicase blocking a helicase that participates in symmetric DNA replication but it did not impede rolling circle replication nor the action of a helicase involved in DNA repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.