Abstract

The capabilities of organisms to contend with environmental changes depend on their genes and their ability to regulate their expression. DNA-binding transcription factors (TFs) play a central role in this process, because they regulate gene expression positively and/or negatively, depending on the operator context and ligand-binding status. In this review, we summarise recent findings regarding the function and evolution of TFs in prokaryotes. We consider the abundance of TFs in bacteria and archaea, the role of DNA-binding domains and their partner domains, and the effects of duplication events in the evolution of regulatory networks. Finally, a comprehensive picture for how regulatory networks have evolved in prokaryotes is provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call