Abstract

Constitutive heterochromatin was once thought to be remarkably stable in composition and transcriptionally inert, but has recently been shown to be surprisingly dynamic. Here, we show that terminal muscle differentiation results in a global reorganisation and spatial clustering of constitutive heterochromatin. This is accompanied by enhanced histone H3K9 and H4K20 tri-methylation across major satellite regions and increased levels of major and minor satellite-encoded transcripts. Histone deacetylase (HDAC) activity is known to be important for initiating muscle differentiation. However, here, we show that low doses of HDAC inhibitors applied after the onset of muscle differentiation prevent the spatial reorganisation of constitutive heterochromatin while allowing terminal differentiation to proceed. Under these conditions, HDAC inhibition interferes with histone methylation and blocks centromere clustering, but does not prevent the temporal expression of muscle regulatory factors or the accumulation of centromere-derived transcripts. The demonstration that HDAC activity is required for spatial relocation of centromeres in differentiating muscle provides a convenient system in which the molecular drivers of differentiation-induced chromosome repositioning can be dissected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.