Abstract

The renormalization group method is employed to study the effective potential in curved spacetime with torsion. The renormalization-group improved effective potential corresponding to a massless gauge theory in such a spacetime is found and in this way a generalization of Coleman-Weinberg's approach corresponding to flat space is obtained. A method which works with the renormalization group equation for two-loop effective potential calculations in torsionful spacetime is developed. The effective potential for the conformal factor in the conformal dynamics of quantum gravity with torsion is thereby calculated explicitly. Finally, torsion-induced phase transitions are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.