Abstract

The RAS genes encode for members of a large superfamily of guanosine-5'-triphosphate (GTP)-binding proteins that control diverse intracellular signaling pathways to promote cell proliferation. Somatic mutations in the RAS oncogenes are the most common activating lesions found in human cancers. These mutations invariably result in the gain-of-function of RAS by impairing GTP hydrolysis and are frequently associated with poor responses to standard cancer therapies. In this review, we summarize key findings of past and present landmark studies that have deepened our understanding of the RAS biology in the context of oncogenesis. We also discuss how emerging areas of research could further bolster a renewed global effort to target the largely undruggable oncogenic RAS and/or its activated downstream effector signaling cascades to achieve better treatment outcomes for RAS-mutant cancer patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.