Abstract

The renal nerves play a role in the pathogenesis of hypertension in a number of experimental models. In the deoxycorticosterone acetate - salt (DOCA-NaCl) hypertensive rat and the spontaneously hypertensive rat (SHR) of the Okamoto strain, total peripheral renal denervation delays the development and blunts the severity of hypertension and causes an increase in urinary sodium excretion, suggesting a renal efferent mechanism. Further, selective lesioning of the renal afferent nerves by dorsal rhizotomy reduces hypothalamic norepinephrine stores without altering the development of hypertension in the SHR, indicating that the renal afferent nerves do not play a major role in the development of hypertension in this genetic model. In contrast, the renal afferent nerves appear to be important in one-kidney, one-clip and two-kidney, one-clip Goldblatt hypertensive rats (1K, 1C and 2K, 1C, respectively) and in dogs with chronic coarctation hypertension. Total peripheral renal denervation attenuates the severity of hypertension in these models, mainly by interrupting renal afferent nerve activity, which by a direct feedback mechanism attenuates systemic sympathetic tone, thereby lowering blood pressure. Peripheral renal denervation has a peripheral sympatholytic effect and alters the level of activation of central noradrenergic pathways but does not alter sodium or water intake or excretion, plasma renin activity or creatinine clearance, suggesting that efferent renal nerve function does not play an important role in the maintenance of this form of hypertension. Selective lesioning of the renal afferent nerves attenuates the development of hypertension, thus giving direct evidence that the renal afferent nerves participate in the pathogenesis of renovascular hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.