Abstract
⁶⁸Ge/⁶⁸Ga radionuclide generators have been investigated for almost fifty years now, since the cyclotron-independent availability of positron emitting ⁶⁸Ga via the ⁶⁸Ge/⁶⁸Ga system had always attracted researches working in basic nuclear chemistry as well as radiopharmaceutical chemistry. However, it took decades and generations of research (and researchers) to finally approach a reliable level of ⁶⁸Ge/⁶⁸Ga generator designs, adequate to the modern requirements of radiometal labeling chemistry. ⁶⁸Ga radiopharmacy now is awaking from a sort of hibernation. The exciting perspective for the ⁶⁸Ge/⁶⁸Ga generator, now - more than ever, asks for systematic chemical, radiochemical, technological and radiopharmaceutical efforts, to guarantee reliable, highly-efficient and medically approved ⁶⁸Ge/⁶⁸Ga generator systems. The expected future broad clinical impact of ⁶⁸Ga-labelled radiopharmaceuticals - beyond the ⁶⁸Ga-DOTA-octreotide derivatives - for imaging tumors and many organs, on the other hand, identifies the development of sophisticated Ga(III) chelating structures to be a key factor. Today, open chain complexing agents have almost completely been displaced by macrocyclic DOTA and NOTA-derived conjugates. Structures of chelating moieties are being optimized in terms of thermodynamic stability and kinetic inertness, in terms of labeling efficacies at different, even acidic pH, and in terms of synthetic options towards bifunctionality, directed to sophisticated covalent coupling strategies to a variety of biologically relevant targeting vectors. Today, one may expect that the ⁶⁸Ge/⁶⁸Ga radionuclide generator systems could contribute to and facilitate the clinical impact of nuclear medicine diagnoses for PET in a dimension comparable to the established ⁹⁹Mo/⁹⁹(m)Tc generator system for SPECT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.