Abstract

Prokaryote-specific sugars, including N,N′-diacetylbacillosamine (diNAcBac) and pseudaminic acid, have experienced a renaissance in the past decade because of their discovery in glycans related to microbial pathogenicity. DiNAcBac is found at the reducing end of oligosaccharides of N- and O-linked bacterial protein glycosylation pathways of Gram-negative pathogens, including Campylobacter jejuni and Neisseria gonorrhoeae. Further derivatization of diNAcBac results in the nonulosonic acid known as legionaminic acid, which was first characterized in the O-antigen of the lipopolysaccharide (LPS) in Legionella pneumophila. Pseudaminic acid, an isomer of legionaminic acid, is also important in pathogenic bacteria such as Helicobacter pylori because of its occurrence in O-linked glycosylation of flagellin proteins, which plays an important role in flagellar assembly and motility. Here, we present recent advances in the characterization of the biosynthetic pathways leading to these highly modified sugars and investigation of the roles that each plays in bacterial fitness and pathogenicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call