Abstract

The application of solvent sublation in the removal of humic acids was investigated in the present study. The humic acids (HA) were removed from an aqueous solution by solvent sublation of humic acid–hexadecylpyridium chloride (HPC) complex (sublate) into isopentanol. Several parameters were examined towards the optimization of humic acid removal; the dosage of a surfactant was found to be the major one, controlling the overall efficiency of the progress. The removal rate was somewhat enhanced by higher airflow rate and almost independent of the volume of the organic solvent floating on the top of the aqueous column. The effects of electrolytes (e.g., NaCl), nonhydrophobic organics (e.g., ethanol), and pH of the solution upon the process were studied. Under the optimized condition, the treatment performance was found to be very efficient, reaching almost 100%, indicating that solvent sublation can serve as a possible alternative technology for the removal of humic acids. The solvent sublation process follows first-order kinetics. A characteristic parameter, apparent activation energy of attachment of the sublate to bubbles, was estimated at a value of 9.48 kJ/mol. Furthermore, the simulation of a mathematical model with the experiments on the solvent sublation of humic acid–HPC was described here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call