Abstract
SIFT (scale invariant feature transform) is one of the most robust and widely used image matching algorithms based on local features. However, its computational complexity is high. In order to reduce the matching time, an improved feature matching algorithm is proposed in this paper under the premise of stable registration accuracy. This paper proposed a normalized cross-correlation with SIFT combination of remote sensing image matching algorithm. The basic idea of the algorithm is performing the space geometry transformation of the input image with reference to the base image. Then the normalized cross-correlation captures the relevant part of the remote sensing images. By this way, we can reduce the matching range. So some unnecessary calculations are properly omitted. By utilizing the SIFT algorithm, we match the preprocessed remote sensing images, and get the registration points. This can shorten the matching time and improve the matching accuracy. Its robustness is increased correspondingly. The experimental results show that the proposed Normalized cross-correlation plus SIFT algorithm is more rapid than the standard SIFT algorithm while the performance is favorably compared to the standard SIFT algorithm when matching among structured scene images. The experiment results confirm the feasibility of our methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.