Abstract

Stimulating indigenous microbes to reduce aqueous U(VI) to insoluble U(IV) by adding an electron donor has been applied as an applicable strategy to remediate uranium-contaminated groundwater in situ. However, biogenic U(IV) minerals are susceptible to oxidative remobilization after exposure to oxygen. To enhance the stability of the end product, glycerol phosphate (GP) was selected to treat artificial uranium-containing groundwater at different pH values (i.e., 7.0 and 5.0) with glycerol (GY) as the control group. The results revealed that removal ratios of uranium with GP were all higher than those with GY, and reduced crystalline U(IV)-phosphate and U(VI)-phosphate minerals (recalcitrant to oxidative remobilization) were generated in the GP groups. Although bioreduction efficiency was influenced at pH 5.0, the stability of the end product with GP was elevated significantly compared with that with GY. Mechanism analysis demonstrated that GP could activate bioreduction and biomineralization of the microbial community, and two stages were included in the GP groups. In the early stage, bioreduction and biomineralization were both involved in the immobilization process. Subsequently, part of the U(VI) precipitate was gradually reduced to U(IV) precipitate by microorganisms. This work implied that the formation of U-phosphate minerals via bioreduction coupled with biomineralization potentially offers a more effective strategy for remediating uranium-contaminated groundwater with long-term stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.