Abstract

Polycyclic aromatic hydrocarbons are a persistent organic pollutant, and their biodegradation in the soil is often limited due to the limited degradation ability of indigenous bacteria and the low activity of exogenous PAH degrading bacteria. Immobilized microbial technology can protect microorganisms from the impact of harsh environments, and distiller's grains have the potential as carriers for microbial immobilization. This study aims to use distiller's grains as a microbial carrier, investigate the feasibility of immobilized microorganisms using distiller's grains for remediation of PAH contaminated soil; explore the relationship between soil nutrient content, consumption, and PAH degradation rate; and reveal the mechanism of bioremediation from the perspective of soil enzyme activity and microbial community composition. The results showed that after 72 days of remediation, the removal rates of phenanthrene and pyrene in the treatment of immobilized microorganisms in distiller grains reached 91.78% and 58.59%, respectively. Distiller grains can serve as a carrier for microorganisms, providing them with shelter and nutrients to enhance their chance of survival. Additionally, they can regulate the composition of soil particles and improve aeration, thereby increasing the efficiency of PAH degradation in soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call