Abstract
We consider a second order linear evolution equation with a dissipative term multiplied by a time-dependent coefficient. Our aim is to design the coefficient in such a way that all solutions decay in time as fast as possible. We discover that constant coefficients do not achieve the goal and neither do time-dependent coefficients, if they are uniformly too big. On the contrary, pulsating coefficients which alternate big and small values in a suitable way prove to be more effective. Our theory applies to ordinary differential equations, systems of ordinary differential equations, and partial differential equations of hyperbolic type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.