Abstract

For an elliptic curve $E$ over a local field $K$ and a separable quadratic extension of $K$, motivated by connections to the Birch and Swinnerton-Dyer conjecture, Kramer and Tunnell have conjectured a formula for computing the local root number of the base change of $E$ to the quadratic extension in terms of a certain norm index. The formula is known in all cases except some where $K$ is of characteristic $2$, and we complete its proof by reducing the positive characteristic case to characteristic $0$. For this reduction, we exploit the principle that local fields of characteristic $p$ can be approximated by finite extensions of $\mathbb{Q}_{p}$: we find an elliptic curve $E^{\prime }$ defined over a $p$-adic field such that all the terms in the Kramer–Tunnell formula for $E^{\prime }$ are equal to those for $E$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.