Abstract

ABSTRACT The aim of this study was to investigate the reliability of running biomechanics assessment with a wearable commercial sensor (RunScribeTM). Participants performed multiple 200-m runs over sand, grass and asphalt ground at the estimated 5-km tempo, with an additional trial with 21-km tempo at the asphalt. Intra-session reliability was excellent for all variables at 5-km pace (intra-class coefficient correlation (ICC) asphalt: 0.90–0.99; macadam: 0.94–1.00; grass: 0.92–1.00), except for shock (good; ICC = 0.83), and contact time and total power output (moderate; ICC = 0.68–0.71). Coefficient of variation (CV) were mostly acceptable in all conditions, except for horizontal ground reaction force (GRF) rate in asphalt 5-km pace trial (CV = 24.5 %), power (CV = 14.3 %) and foot strike type (CV = 30.9 %) in 21-km pace trial, and horizontal GRF rate grass trial (CV = 15.7 %). Inter-session reliability was high or excellent for the majority of the outcomes (ICC≥0.85). Total power output (ICC = 0.56–0.65) and shock (ICC = 0.67–0.75) showed only moderate reliability across all conditions. Power (CV = 12.5–13.8 %), foot strike type (CV = 14.9–29.4 %) and horizontal ground reaction force rate (CV = 12.4–36.4 %) showed unacceptable CV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call