Abstract

The effects of nonconductive adhesive (NCA) trapping on the reliability of low-temperature (150°C) thermo-compression (TC)-bonded flip-chip joints were investigated in this study. Both rough and smooth Cu pads were employed to investigate the effects of surface roughness on NCA trapping, with Sn-Ag solder-capped Cu pillar bumps bonded onto the Cu pads via low-temperature TC bonding. The NCA trapping in the rough Cu pad sample was much greater than that in the smooth Cu pad sample after TC bonding. In addition, the NCA trapping increased with decreasing bonding pressure. The electrical resistance for both the rough and smooth Cu pad samples increased after preconditioning (moisture sensitive level 3) and thermal cycling (-55°C/125°C) reliability tests. The high electrical resistance of the rough Cu pad sample was due to the crack propagation caused by the expansion of the trapped NCA. The reliability of the flip chip joint increased with increasing bonding pressure increased and decreasing surface roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.