Abstract
Spherical pressure-resistant shells, as a universal structural component of deep-sea submersibles, provide a safe and normal operating environment for personnel and internal equipment. In the paper it presented and optimized the BP neural network model based on a genetic algorithm (GA) accordingly, and the method and accuracy are validated through by a beam model. Simultaneously focusing on steel spherical shells, the study proposed a dataset that captures the influence of the primary dimension of the shell (radius-to-thickness ratio, R/t) on the critical pressure response. The genetic algorithm is employed to optimize the back propagation (BP) neural network model for predicting critical pressure. The structural reliability is adopted as a design criterion to determinate and optimize the geometric parameters and critical pressure of the spherical shell structure. Finally, an ultra-high-strength steel spherical model is designed, constructed and meanwhile collapse pressure tests are accomplished to verify the accuracy of the presented improved BP neural network model based on the computational reliability method. The results reveal that the machine learning optimization design method proposed in this paper can effectively enhance the accuracy of critical pressure predictions and the precision of reliability assessments for deep-sea spherical shells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.