Abstract

The genetic structure of a species is shaped by the interaction of contemporary and historical factors. Analyses of individuals from the same population sampled at different points in time can help to disentangle the effects of current and historical forces and facilitate the understanding of the forces driving the differentiation of populations. The use of such time series allows for the exploration of changes at the population and intraspecific levels over time. Material from museum collections plays a key role in understanding and evaluating observed population structures, especially if large numbers of individuals have been sampled from the same locations at multiple time points. In these cases, changes in population structure can be assessed empirically. The development of new molecular markers relying on short DNA fragments (such as microsatellites or single nucleotide polymorphisms) allows for the analysis of long-preserved and partially degraded samples. Recently developed techniques to construct genome libraries with a reduced complexity and next generation sequencing and their associated analysis pipelines have the potential to facilitate marker development and genotyping in non-model species. In this review, we discuss the problems with sampling and available marker systems for historical specimens and demonstrate that temporal comparative studies are crucial for the estimation of important population genetic parameters and to measure empirically the effects of recent habitat alteration. While many of these analyses can be performed with samples taken at a single point in time, the measurements are more robust if multiple points in time are studied. Furthermore, examining the effects of habitat alteration, population declines, and population bottlenecks is only possible if samples before and after the respective events are included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call