Abstract
BackgroundWe aimed to investigate the effects of norepinephrine (NE) released from endogenous stores on bacterial translocation of Escherichia coli in mice by administration of 6-hydroxydopamine (6-OHDA), which selectively destroys noradrenergic nerve terminals.Material/MethodsE. coli strain BW25113 and its derivatives (BW25113ΔqseC and BW25113ΔqseC pQseC) were used in this study. The serum concentrations of endotoxin were analyzed. The strains BW25113, BW25113ΔqseC, and BW25113ΔqseC pQseC were detected respectively in tissue specimens harvested from mice treated with 6-OHDA.ResultsMice treated with BW25113ΔqseC showed reduced levels of bacterial translocation following administration of 6-OHDA compared with mice treated with BW25113. The defect of E. coli QseC receptor caused the norepinephrine-QseC signal chain to be interrupted, and the invasiveness and penetrating power of the bacteria on the intestinal mucosa was weakened, eventually leading to a significant decrease in the incidence of bacterial translocation.ConclusionsNE modulates the interaction of enteric bacterial pathogens with their hosts via QseC. The blockade of the QseC receptor-mediated effects may be useful to attenuate bacterial translocation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Medical science monitor : international medical journal of experimental and clinical research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.