Abstract

In our earlier work we have demonstrated that the treatment of squamous carcinoma cell line A431 with a pharmacological inhibitor of phospholipase C activity, U73122, resulted in fast release of stress-inducible heat shock protein 70 (Hsp70) into the extracellular medium (Evdonin et al., Cancer Cell Int., 4, 2, 2004). The purpose of the present study was to identify cellular organelles involved in the release of Hsp70 from A431 cells. We determined that Hsp70 is present in granules located at the periphery of cells, which had been treated with U73122 or subjected to heat shock. An inhibitor of the classical protein export pathway, brefeldin A was found to prevent the U73122-induced appearance of Hsp70 in the extracellular medium and in the peripheral granules. These findings suggest that vesicular transport is involved in Hsp70 release. The Hsp70-containing granules did not carry markers specific for lipid bodies, endosomes, or lysosomes. However, they were positive for a marker of secretory granules, i.e. chromogranin A. The levels of extracellular Hsp70 and chromogranin A were found to increase simultaneously. The secretory-like granule-dependent transport of Hsp70 was also studied in minimally transformed human HaCaT keratinocytes. We found that after U73122 and heat stress treatment, HaCaT cells secreted Hsp70 in a manner similar to A431 cells. Collectively our results suggest that human keratinocyte-derived cells release Hsp70 in the extracellular medium through a pathway involving secretory-like granules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.