Abstract

Fumonisin B1 (FB1), a worldwide contaminating mycotoxin produced by Fusarium, poses a great threat to the poultry industry. It was reported that extracellular traps could be induced by FB1 efficiently in chickens. However, the relevance of autophagy and glycolysis in FB1-triggered heterophil extracellular trap (HET) formation is unclear. In this study, immunostaining revealed that FB1-induced HETs structures were composed of DNA coated with histones H3, and elastase, and that heterophils underwent LC3B-related autophagosome formation assembly driven by FB1. Western blotting showed that FB1 downregulated the phosphorylated phosphoinositide 3-kinase3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin complex 1 (mTORC1) axis and raised the AMP-activated kinase α (AMPKα) activation protein. Furthermore, rapamycin- and 3-Methyladenine (3-MA)-treatments modulated FB1-triggered HET formation according to the pharmacological analysis. Further studies on energy metabolism showed that glucose/lactate transport and glycolysis inhibitors abated FB1-induced HETs. These results showed that FB1-induced HET formation might interact with the autophagy process and relied on glucose/monocarboxylic acid transporter 1 (MCT1) and glycolysis, reflecting chicken's early innate immune responses against FB1 intake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.