Abstract

As the emerging contaminants, the behavior and fate of microplastics (MPs) were highly related to the interactions with surrounding organic matters. However, information on the effects of molecular sizes of organic matters on the interaction is still lacking. In this study, the bulk algal-derived organic matter (AOM) samples were obtained and further fractionated into high molecular weight (HMW-, 1kDa-0.45 μm) and low molecular weight (LMW-, < 1 kDa) fractions. The interaction between MPs [polyethylene (PE) and polystyrene (PS)] and these MW-fractionated AOMs were characterized by dissolved organic carbon, fluorescence and absorbance spectroscopy, and fourier transform infrared (FTIR) analysis. Results showed that presence of AOM could effectively inhibit the release of additives from MPs. Further analysis found that the inhibition extents decreased in the order of HMW- > bulk > LMW-AOM. The absorbance and fluorescence spectroscopy showed that aromatic protein-like substances in HMW fraction exhibited higher adsorption affinity to MPs than the bulk and LMW counterparts. The strong sorption of aromatic substances may offer more binding sites for additives to inhibit the release of organic substances. Moreover, two dimensional FTIR correlation spectroscopy revealed that the HMW non-aromatic substances were preferentially adsorbed onto PS, which led to an enhanced adsorption capacity to additives by forming H-bonding. Therefore, the MW- and component-dependent heterogeneities of AOM samples must be fully considered in evaluating the environmental behavior of MPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call