Abstract

In order to utilize the psyllium husk, a medicinally important natural polysaccharide, for developing the novel hydrogels for the controlled drug delivery device, we have prepared psyllium and N-hydroxymethylacrylamide based polymeric networks by using N, N′-methylenebisacrylamide ( N, N′-MBAAm) as crosslinker. The polymeric networks thus formed were characterized with scanning electron micrography (SEM), FTIR and thermogravimetric analysis (TGA) techniques to study various structural aspects of the networks and also with the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl]. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Maximum P s 748.3 was observed at 13.0 × 10 −3 mol/L of [ N, N′-MBAAm] in 0.5 M NaOH solution. The release dynamics of model drugs (salicylic acid and tetracycline hydrochloride) from hydrogels has also been discussed, for the evaluation of the release mechanism and diffusion coefficients. The effect of pH on the release pattern of tetracycline has been studied by varying the pH of the release medium. In release medium of pH 7.4 buffer the release pattern of tetracycline drastically changes to the extent that mechanism of drug diffusion shifted from non-Fickian diffusion to Fickian diffusion. It has been observed that diffusion exponent ‘ n’ have 0.71, 0.67 and 0.52 values and gel characteristic constant ‘ k’ have 1.552 × 10 −2, 2.291 × 10 −2 and 5.309 × 10 −2 values in distilled water, pH 2.2 buffer and pH 7.4 buffer, respectively, for tetracycline release. In solution of pH 7.4 buffer, the rate of polymer chain relaxation was more as compare to the rate of drug diffusion from these hydrogels and it follows Fick's law of diffusion. The value of the initial diffusion coefficient for the release of tetracycline hydrochloride was higher than the value of late time diffusion coefficient in each release medium indicating that in the start, the diffusion of drug from the polymeric matrix was fast as compare to the latter stages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call