Abstract

The main source of mercury (Hg) anthropogenic emissions is the combustion of hard and lignite coal in power plants. Reduction of Hg emissions from coal-based power production systems involves Hg removal from the fuel before combustion/gasification by thermal treatment (i.e., low-temperature pyrolysis). Herein, we present the results of laboratory and bench-scale studies on Hg removal from coal via thermal fuel treatment. The influence of the process temperature and coal residence time in the reaction zone on Hg removal efficiency and fuel parameters is studied. The properties of the process products are analyzed as follows: proximate and ultimate analysis for solids as well as H2, N2, CO, CO2, CH4, organic compounds C2–C5, density, and HHV for gaseous. The results show a substantial reduction of Hg in the fuel using a low-temperature pyrolysis process. At moderate pyrolysis temperature provided Hg removal efficiencies of up to 50% for hard coal and over 90% for lignite, with a moderate decrease in the chemical enthalpy of the fuel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call