Abstract

We study the relativistic Lee model on static Riemannian manifolds. The model is constructed nonperturbatively through its resolvent, which is based on the so-called principal operator and the heat kernel techniques. It is shown that making the principal operator well defined dictates how to renormalize the parameters of the model. The renormalization of the parameters is the same in the light-front coordinates as in the instant form. Moreover, the renormalization of the model on Riemannian manifolds agrees with the flat case. The asymptotic behavior of the renormalized principal operator in the large number of bosons' limit implies that the ground state energy is positive. In 2 + 1 dimensions, the model requires only a mass renormalization. We obtain rigorous bounds on the ground state energy for the n-particle sector of the (2 + 1)-dimensional model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.