Abstract

AbstractSoil water storage and stable isotopes dynamics were investigated in dominant soil–vegetation assemblages of a wet northern headwater catchment (3.2 km2) with limited seasonality in precipitation. We determined the relative influence of soil and vegetation cover on storage and transmission processes. Forested and non‐forested sites were compared, on poorly drained histosols in riparian zones and freely draining podzols on steeper hillslopes. Results showed that soil properties exert a much stronger influence than vegetation on water storage dynamics and fluxes, both at the plot and catchment scale. This is mainly linked to the overall energy‐limited climate, restricting evaporation, in conjunction with high soil water storage capacities. Threshold behaviour in runoff responses at the catchment scale was associated with differences in soil water storage and transmission dynamics of different hydropedological units. Linear input–output relationships occurred when runoff was generated predominantly from the permanently wet riparian histosols, which show only small dynamic storage changes. In contrast, nonlinear runoff generation was related to transient periods of high soil wetness on the hillslopes. During drier conditions, more marked differences in soil water dynamics related to vegetation properties emerged, in terms of evaporation and impacts on temporarily increasing dynamic storage potential. Overall, our results suggest that soil type and their influence on runoff generation are dominant over vegetation effects in wet, northern headwater catchments with low seasonality in precipitation. Potential increase of subsurface storage by tree cover (e.g. for flood management) will therefore be spatially distributed throughout the landscape and limited to rare and extreme dry conditions. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.