Abstract

Polyurethane elastomers based on polyols such as polycaprolactone diol of molar mass 2000 and polytetramethylene glycol of molar mass 2000; diisocyanantes such as diphenyl methane 4,4′ diisocyanate and dicyclohexyl methane 4,4′ diisocyanate; and chain extenders such as bisphenol-A, bisphenol-S,bisphenol-AF, and their brominated derivatives were synthesized. The effects of polyol, diisocyanate, and chain extender on the physical and thermal properties were also studied. The polyurethane elastomers were investigated by X-ray diffraction (XRD), differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. Their limiting oxygen indexes (LOIs), solubilities, tensile strengths, hardnesses, and elongations were also determined. XRD analyses revealed that all of the polyurethanes were semicrystalline. However, the addition of bromine atoms in the polyurethanes markedly decreased their degrees of crystallinity. The brominated polyurethane elastomers have good flame retardancy, as indicated by large LOIs. All of the unbrominated polyurethanes showed good mechanical properties and high thermal stabilities. Polyurethanes based on bisphenol-S had lower solvent resistance caused by the dipolar nature of sulfonyl groups in the polymer chains. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1251–1265, 1997

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.