Abstract

The relative 'performances of improved ridge estimators and an empirical Bayes estimator are studied by means of Monte Carlo simulations. The empirical Bayes method is seen to perform consistently better in terms of smaller MSE and more accurate empirical coverage than any of the estimators considered here. A bootstrap method is proposed to obtain more reliable estimates of the MSE of ridge esimators. Some theorems on the bootstrap for the ridge estimators are also given and they are used to provide an analytical understanding of the proposed bootstrap procedure. Empirical coverages of the ridge estimators based on the proposed procedure are generally closer to the nominal coverage when compared to their earlier counterparts. In general, except for a few cases, these coverages are still less accurate than the empirical coverages of the empirical Bayes estimator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.