Abstract
We used simulations to compare the performance of 10 approaches that have been used for treating unambiguously aligned gaps in phylogenetic analyses. We examined how these approaches perform under the ideal conditions of correct alignments, as well as how robust they are to errors caused by use of inferred alignments. Our results indicate that 5th-state coding dramatically outperformed all other coding methods, which in turn all outperformed treating gaps as missing data or excluding gapped positions. Simple indel coding (SIC) and modified complex indel coding (MCIC) performed about the same, and generally outperformed the other indel-coding methods. The high performance of 5th-state coding was largely found to be a weighting artifact. We suggest that MCIC-coded gap characters be scored for all unambiguously aligned gaps in parsimony-based molecular phylogenetic analyses. When the number of terminals sampled precludes the use of MCIC, SIC may be used as an effective substitute.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.