Abstract

Formal modeling approaches to cognition provide a principled characterization of observed responses in terms of a set of postulated processes, specifically in terms of parameters that modulate the latter. These model-based characterizations are useful to the extent that there is a clear, one-to-one mapping between parameters and model expectations (identifiability) and that parameters can be recovered from reasonably sized data using a typical experimental design (recoverability). These properties are sometimes not met for certain combinations of model classes and data. One suggestion to improve parameter identifiability and recoverability involves the use of "empirical priors", which constrain parameters according to a previously observed distribution of values. We assessed the efficacy of this proposal using a combination of real and artificial data. Our results showed that a point-estimate variant of the empirical-prior method could not improve parameter recovery systematically. We identified the source of poor parameter recovery in the low information content of the data. As a follow-up step, we developed a fully Bayesian variant of the empirical-prior method and assessed its performance. We find that even such a method that takes the covariance structure of the parameter distributions into account cannot reliably improve parameter recovery. We conclude that researchers should invest additional efforts in improving the informativeness of their experimental designs, as many of the problems associated to impoverished designs cannot be alleviated by modern statistical methods alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.