Abstract

Although chironomids are popular model organisms in ecological research and indicators of bioassessment, the relative role of dispersal and environmental filtering in their community assembly is still poorly known, especially at fine spatial scales. In this study, we applied a metacommunity framework and used various statistical tools to examine the relative role of spatial and local environmental factors in distribution of benthic chironomid taxa and their assemblages in large and shallow Lake Balaton, Hungary. Contrary to present predictions on the metacommunity organisation of aquatic insects with winged terrestrial adults, we found that dispersal limitation can considerably affect distribution of chironomids even at lake scale. However, we also revealed the predominant influence of environmental filtering, and strong taxa–environment relationships were observed especially along sediment type, sediment organic matter content and macrophyte coverage gradients. We account that identified reference conditions and assemblages along with specified optima and tolerances of the abundant taxa can contribute to our understanding of chironomid ecology and be utilised in shallow lake bioassessment. Further, we propose that predictive models of species–environment relationships should better take into account pure spatial structuring of local communities and species-specific variability of spatial processes and environmental control even at small spatial scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.