Abstract
Since Dawson and Robinson, a dominant issue in the quantitative study of public policy has been the relative importance of socioeconomic and political variables for determining policy outcomes. It is argued here that past efforts to resolve this issue have been unsatisfactory, largely because they relied on inadequate statistical techniques, i.e., simple correlation, partial correlation, or multiple regression. Coefficients from these techniques are irrelevant for all but the most peculiar models of public policy. In general, if the researcher wishes to assess the relative importance of independent variables, it will be necessary to resort to path analysis of a formally constructed causal model. The comparison of “effects coefficients,” derived from path analysis, is offered as the preferred means of evaluating independent variables, superior to comparisons of coefficients from simple correlation, partial correlation, or multiple regression. When the effects coefficients are actually calculated for a popular model of welfare policy, socioeconomic variables appear much more important than political variables, contrary to interpretations coming from the more traditional statistical techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.