Abstract

IntroductionClinical trials on preclinical Alzheimer’s disease are challenging because of the slow rate of disease progression. We use a simulation study to demonstrate that models of repeated cognitive assessments detect treatment effects more efficiently than models of time to progression. MethodsMultivariate continuous data are simulated from a Bayesian joint mixed-effects model fit to data from the Alzheimer’s Disease Neuroimaging Initiative. Simulated progression events are algorithmically derived from the continuous assessments using a random forest model fit to the same data. ResultsWe find that power is approximately doubled with models of repeated continuous outcomes compared with the time-to-progression analysis. The simulations also demonstrate that a plausible informative missing data pattern can induce a bias that inflates treatment effects, yet 5% type I error is maintained. DiscussionGiven the relative inefficiency of time to progression, it should be avoided as a primary analysis approach in clinical trials of preclinical Alzheimer’s disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.