Abstract

Forming an accurate representation of the body relies on the integration of information from multiple sensory inputs. Both vision and proprioception are important for body localization. Whilst adults have been shown to integrate these sources in an optimal fashion, few studies have investigated how children integrate visual and proprioceptive information when localizing the body. The current study used a mediated reality device called MIRAGE to explore how the brain weighs visual and proprioceptive information in a hand localization task across early childhood. Sixty-four children aged 4–11 years estimated the position of their index finger after viewing congruent or incongruent visuo-proprioceptive information regarding hand position. A developmental trajectory analysis was carried out to explore the effect of age on condition. An age effect was only found in the incongruent condition which resulted in greater mislocalization of the hand toward the visual representation as age increased. Estimates by younger children were closer to the true location of the hand compared to those by older children indicating less weighting of visual information. Regression analyses showed localizations errors in the incongruent seen condition could not be explained by proprioceptive accuracy or by general attention or social differences. This suggests that the way in which visual and proprioceptive information are integrated optimizes throughout development, with the bias toward visual information increasing with age.

Highlights

  • The ability to locate our body parts in space is fundamental for successful interaction with the environment and plays a vital role in developing a sense of the bodily self

  • Accuracy remained high in the congruent unseen condition, when only proprioceptive inputs were present at judgment

  • The present study investigated the relative contributions of visual and proprioceptive inputs on the development of body localization in primary school-aged children

Read more

Summary

Introduction

The ability to locate our body parts in space is fundamental for successful interaction with the environment and plays a vital role in developing a sense of the bodily self. In order to understand and interact with the environment around the body, the brain must integrate information from multiple sensory modalities to construct unified representations of the bodily self and the world around it. How the brain integrates sensory information in order to make sense of the body has been studied extensively in adulthood. When judging the size of an object, estimates of size derived from each sense are averaged and combined to construct a coherent percept. These estimates are prone to variance but, by averaging the estimates, the brain can reduce the noise in the overall percept (Landy et al, 1995). The degree of variance in an estimate is dependent on both bottom-up processes (i.e., the incoming sensory information) and top-down processes (derived from prior knowledge and experience)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.