Abstract
We calculate learning rates when agents are informed through public and private observation of other agents' actions. We characterize the evolution of the distribution of posterior beliefs. If the private learning channel is present, convergence of the distribution of beliefs to the perfect-information limit is exponential at a rate equal to the sum of the mean arrival rate of public information and the mean rate at which individual agents are randomly matched with other agents. If, however, there is no private information sharing, then convergence is exponential at a rate strictly lower than the mean arrival rate of public information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.