Abstract

Explaining species richness patterns over broad geographic scales is a central issue of biogeography and macroecology. In this study, we took spatial autocorrelation into account and used terrestrial vertebrate species richness data from 211 nature reserves, together with climatic and topographical variables and reserve area, to explain terrestrial vertebrate species richness patterns in China and to test two climatically based hypotheses for animals. Our results demonstrated that species richness patterns of different terrestrial vertebrate taxa were predicted by the environmental variables used, in a decreasing order, as reptiles (56.5%), followed by amphibians (51.8%), mammals (42%), and birds (19%). The endothermic vertebrates (mammals and birds) were closely correlated with net primary productivity (NPP), which supports the productivity hypothesis, whereas the ectothermic vertebrates (amphibians and reptiles) were strongly associated with both water and energy variables but weakly with NPP, which supports the physiologically based ambient climate hypothesis. The differences in the dependence of endothermic and ectothermic vertebrates on productivity or ambient climate may be due in part to their different thermoregulatory mechanisms. Consistent with earlier studies, mammals were strongly and positively related to geomorphologic heterogeneity, measured by elevation range, implying that the protection of mountains may be especially important in conserving mammalian diversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call