Abstract

The release of mine effluents can have a damaging impact on receiving water bodies. Therefore, treatment of mine waters before discharge is imperative. A novel biological SO²⁻₄ removal technology has been developed whereby the degradation/fermentation products of grass cellulose, volatile fatty acids (VFA), function as the electron donors and SO²⁻₄ as the electron acceptor. The aim of the study presented here was to elucidate the interactions between the cellulose degradation rate, the chemical oxygen demand (COD), VFA production and its/utilisation rate as well as the sulphate reduction rate. To this end, two stirred batch reactors were operated: a test and a control reactor. The results showed that high COD and VFA concentrations were achieved after cellulose degradation, which resulted in a rapid decrease in the SO²⁻₄ concentration in the test reactor. The VFA results indicated that propionic and butyric acids were preferentially utilised, producing acetate. In the control reactor, the VFA and the COD production increased initially at the same rate, followed later by a decrease at a similar rate. These results suggest that the degradation products formed were utilised by the methanogenic bacteria to produce methane rather than by the sulphate-reducing bacteria, since the control reactor contained no sulphate (Visser 1995). Furthermore, these results showed a clear relationship between the COD/VFA production and the SO²⁻₄reduction in the test reactor and between the COD and VFA pattern in the control reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.