Abstract

The objective of this study was to determine the relationships of uncoupling protein 2 and 3 expression, SNP of mitochondrial DNA, and residual feed intake (RFI) in Angus steers selected to have high or low RFI. Individual feed intake was measured via the GrowSafe feed intake system over a 3-mo period and used to calculate RFI, a measure of efficiency. Based on these calculations, 6 low- (average RFI = -1.57 kg) and 6 high- (average RFI = 1.66 kg) RFI steers were selected for further study. Blood was collected via jugular venipuncture 1 wk before slaughter for the isolation of mitochondrial DNA. The steers were then killed to collect LM for the measurement of uncoupling protein 2 and 3 mRNA and protein expression. Protein and mRNA expression of uncoupling protein 2 and 3 were determined by Western blotting and quantitative PCR, respectively. To determine SNP of mitochondrial DNA, total DNA was isolated from blood via standard phenol/chloroform extraction; fragments were amplified with PCR and sequenced with an automated nucleotide sequencer. Average daily gain and carcass composition were not different (P > 0.13) between the high- and low-RFI steers; however, ADFI by the high-RFI animals was 3.77 kg greater (P < 0.001) than the low-RFI animals. No difference (P > 0.55) was observed between the high- and low-RFI animals in their expression of uncoupling protein 2 or 3 mRNA or protein. On average 9.8 and 8.9 polymorphisms were found per mitochondrial genome for the low- and high-RFI steers, respectively. None of these polymorphisms were related to RFI. It seems that the expression of uncoupling protein 2 and 3 and mitochondrial DNA sequence are not related to RFI status.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call