Abstract

The relationship of stand structural features with understory light levels, estimated by gap light index (GLI), was investigated in 22 second-growth eastern white (Pinus strobus L.) and red pine (Pinus resinosa Ait.)-dominated stands in central Ontario that encompassed a broad range in density and basal area. Simple, empirical light models were developed to quantify the influence of several stand structural variables on canopy transmittance as estimated by GLI. Models were also derived to facilitate the operational identification of residual basal area, density, and percent canopy closure associated with target understory light levels that optimize the growth of white pine regeneration and its protection from weevil and blister rust when using the uniform shelterwood silvicultural system. Regression models indicated significant negative, nonlinear relationships of GLI with density, basal area, a stand density index, total crown area, and foliar biomass, while GLI was linearly related to percent canopy closure. Application of these models to identify density, basal area, and canopy closure values associated with target light levels for the regeneration and removal cuts of uniform shelterwoods demonstrates the use of this information to help guide management of white pine–red pine forests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.